Generate embeddings using the selected Large Language Model (LLM).
This endpoint allows you to generate embeddings for text inputs using a specific model. The response will be an Embedding Object consistent with OpenAI's Embedding Object format.
SDK Usage
The embeddings.create method in the Portkey SDK facilitates the generation of embeddings using various LLMs. This method provides a straightforward interface similar to the OpenAI API for generating embeddings.
# with only request paramsportkey.embeddings.create(requestParams);# with request and config paramsportkey.with_options(configParams).embeddings.create(requestParams);
Parameters
requestParams (Object): Parameters for the embedding request. All OpenAI params are supported. These parameters include the input text and model, and are automatically transformed by Portkey for LLMs other than OpenAI. Parameters not supported by other LLMs will be omitted.
configParams (Object): Additional configuration options for the request. This is an optional parameter that can include custom config options for this specific request. These will override the configs set in the Portkey Client.
Example Usage
import Portkey from'portkey-ai';// Initialize the Portkey clientconstportkey=newPortkey({ apiKey:"PORTKEY_API_KEY",// Replace with your Portkey API key virtualKey:"VIRTUAL_KEY"// Optional: For virtual key management});// Generate embeddingsasyncfunctiongetEmbeddings() {constembeddings=awaitportkey.embeddings.create({ input:"embed this", model:"text-embedding-3-large", });console.log(embeddings);}awaitgetEmbeddings();// Generate embeddings with config paramsasyncfunctiongetEmbeddingsWithConfig() {constembeddings=awaitportkey.embeddings.create({ input:"embed this", model:"text-embedding-3-large", }, {config:"custom-config-123"});console.log(embeddings);}awaitgetEmbeddingsWithConfig();
from portkey_ai import Portkey# Initialize the Portkey clientportkey =Portkey( api_key="PORTKEY_API_KEY", # Replace with your Portkey API key virtual_key="VIRTUAL_KEY"# Optional: For virtual key management)# Generate embeddingsdefget_embeddings(): embeddings = portkey.embeddings.create( input='The vector representation for this text', model='text-embedding-3-large' )print(embeddings)get_embeddings()# Generate embeddings with config parametersdefget_embeddings_with_config(): embeddings = portkey.with_options(config='custom-config-123').embeddings.create( input='The vector representation for this text', model='text-embedding-3-large' })print(embeddings)get_embeddings_with_config()
Response Format
The response will conform to the Embedding Object schema from the Portkey API, typically including a list of embedding vectors consistent with the format provided by OpenAI for embedding objects.
Creates an embedding vector representing the input text.
POSThttps://api.portkey.ai/v1/embeddings
Body
input*one of
Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for text-embedding-ada-002), cannot be an empty string, and any array must be 2048 dimensions or less. Example Python code for counting tokens.
Example: "The quick brown fox jumped over the lazy dog"
model*any of
ID of the model to use. You can use the List models API to see all of your available models, or see our Model overview for descriptions of them.
Example: "text-embedding-3-small"
encoding_formatenum
The format to return the embeddings in. Can be either float or base64.
Example: "float"
floatbase64
dimensionsinteger
The number of dimensions the resulting output embeddings should have. Only supported in text-embedding-3 and later models.
userstring
A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. Learn more.
Example: "user-1234"
Response
OK
Body
data*array of Embedding (object)
The list of embeddings generated by the model.
model*string
The name of the model used to generate the embedding.